Extensions 1→N→G→Q→1 with N=C22×D7 and Q=C6

Direct product G=N×Q with N=C22×D7 and Q=C6
dρLabelID
D7×C22×C6168D7xC2^2xC6336,225

Semidirect products G=N:Q with N=C22×D7 and Q=C6
extensionφ:Q→Out NdρLabelID
(C22×D7)⋊1C6 = C2×C4⋊F7φ: C6/C1C6 ⊆ Out C22×D756(C2^2xD7):1C6336,123
(C22×D7)⋊2C6 = D4×F7φ: C6/C1C6 ⊆ Out C22×D72812+(C2^2xD7):2C6336,125
(C22×D7)⋊3C6 = C2×Dic7⋊C6φ: C6/C1C6 ⊆ Out C22×D756(C2^2xD7):3C6336,130
(C22×D7)⋊4C6 = C2×A4×D7φ: C6/C2C3 ⊆ Out C22×D7426+(C2^2xD7):4C6336,217
(C22×D7)⋊5C6 = C2×D7⋊A4φ: C6/C2C3 ⊆ Out C22×D7426+(C2^2xD7):5C6336,218
(C22×D7)⋊6C6 = C23×F7φ: C6/C2C3 ⊆ Out C22×D756(C2^2xD7):6C6336,216
(C22×D7)⋊7C6 = C6×D28φ: C6/C3C2 ⊆ Out C22×D7168(C2^2xD7):7C6336,176
(C22×D7)⋊8C6 = C3×D4×D7φ: C6/C3C2 ⊆ Out C22×D7844(C2^2xD7):8C6336,178
(C22×D7)⋊9C6 = C6×C7⋊D4φ: C6/C3C2 ⊆ Out C22×D7168(C2^2xD7):9C6336,183

Non-split extensions G=N.Q with N=C22×D7 and Q=C6
extensionφ:Q→Out NdρLabelID
(C22×D7).C6 = D14⋊C12φ: C6/C1C6 ⊆ Out C22×D756(C2^2xD7).C6336,17
(C22×D7).2C6 = C2×C4×F7φ: C6/C2C3 ⊆ Out C22×D756(C2^2xD7).2C6336,122
(C22×D7).3C6 = C3×D14⋊C4φ: C6/C3C2 ⊆ Out C22×D7168(C2^2xD7).3C6336,68
(C22×D7).4C6 = D7×C2×C12φ: trivial image168(C2^2xD7).4C6336,175

׿
×
𝔽